Analysis of Dependently Censored Data Based on Quantile Regression.

نویسندگان

  • Shuang Ji
  • Limin Peng
  • Ruosha Li
  • Michael J Lynn
چکیده

Dependent censoring occurs in many biomedical studies and poses considerable methodological challenges for survival analysis. In this work, we develop a new approach for analyzing dependently censored data by adopting quantile regression models. We formulate covariate effects on the quantiles of the marginal distribution of the event time of interest. Such a modeling strategy can accommodate a more dynamic relationship between covariates and survival time compared to traditional regression models in survival analysis, which usually assume constant covariate effects. We propose estimation and inference procedures, along with an efficient and stable algorithm. We establish the uniform consistency and weak convergence of the resulting estimators. Extensive simulation studies demonstrate good finite-sample performance of the proposed inferential procedures. We illustrate the practical utility of our method via an application to a multicenter clinical trial that compared warfarin and aspirin in treating symptomatic intracranial arterial stenosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantile Regression Based on Semi-Competing Risks Data

This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecif...

متن کامل

Censored quantile regression with recursive partitioning-based weights.

Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recent...

متن کامل

Quantile regression analysis of censored longitudinal data with irregular outcome-dependent follow-up.

In many observational longitudinal studies, the outcome of interest presents a skewed distribution, is subject to censoring due to detection limit or other reasons, and is observed at irregular times that may follow a outcome-dependent pattern. In this work, we consider quantile regression modeling of such longitudinal data, because quantile regression is generally robust in handling skewed and...

متن کامل

Self-consistent estimation of censored quantile regression

The principle of self-consistency has been employed to estimate regression quantile with randomly censored response. It has been of great interest to study how the self-consistent estimation of censored regression quantiles is connected to the alternative martingale-based approach. In this talk, I will first present a new formulation of self-consistent censored regression quantiles based on sto...

متن کامل

Censored depth quantiles

Quantile regression is a wide spread regression technique which allows to model the entire conditional distribution of the response variable. A natural extension to the case of censored observations was introduced by Portnoy (2003) using a reweighting scheme based on the Kaplan-Meier estimator. We apply the same ideas on the depth quantiles defined in Rousseeuw and Hubert (1999). This leads to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistica Sinica

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2014